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In contrast to the complex case, the best Chebyshev approximation with respect
to a finite-dimensional Haar subspace V c C(Q) (Q compact) is always strongly
unique if all functions are real valued. However, strong uniqueness still holds for
complex valued functions f with a so-called reference of maximal length. It is known
that this class forms an open and dense subset in C(Q) if the number of isolated
points of Q does not exceed dim V. In this paper, we show that this result also
holds in the space A( Q) of functions, analytic in the interior of Q, if Q satisfies a
certain regularity condition. ,j', 1993 AcademIC Press. Inc,

1. INTRODUCTION

Let I be a continuous function defined on a compact subset Q of the
complex plane C and Van n-dimensional Haar subspace of c(Q), where
C(Q) denotes the space of continuous complex valued functions on Q. We
want to determine a v E V such that

III - vii = min III - wll,
weV

where II ·11 denotes the Chebyshev norm on Q. An important role in charac­
terizing the best approximation v to I play certain subsets of extremal
points of the error curve I-v.

1.1. DEFINITION. Let g E C(Q) and (z, cp) E Q x [ - 7[, + 7[]. z (as well as
(z, cp)) is called extremal point of g if
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1.2. DEFINITION. R = {(Z 1, cP d, ..., (Zm, CPm)} c Q X [ -71:, + 71:] IS called
relerence if

(i) there exist A. I , ... , ).", > 0 such that

and
m

L A.ke'<Pkv(zd = 0
k=l

for all v E V,

(ii) no proper subset of R satisfies (i).

A reference R is called a relerence v.'ith respect to I - v, if all (z, cp) E Rare
extremal points ofI-v.

It is known from the Kolmogoroff criterion that v is a best approxima­
tion to I iff there exists a reference R with respect to I-v.

Furthermore each IE C( Q) has a unique best approximation v and the
length IRI of a reference R with respect to I - v satisfies

n + I ~ IRI ~ 2n + 1.

The number IRI is closely related to strong uniqueness, which is very
important for numerical algorithms.

1.3. DEFINITION. The best approximation v to I is strongly unique if
there is a real number r > 0 such that for each WE V

III - wll ~ III - vii + r Ilv - 11'11·

If the best approximation v is not strongly unique then IRI < n + I in the
real case and IRI < 2n + I in the complex case [4, Thm. 2]. However, if the
Haar condition is satisfied then jRI > n. Hence, in the real case the best
approximation is always strongly unique. This is in contrast to complex
approximation, where functions can be found with less than 2n extremal
points of I-v [5, Chap. 4] and so v is not strongly unique [2].

The aim of this paper is to describe the density of functions with strongly
unique best approximation: Can we find a function g for fixed IE C(Q)
with strongly unique best approximation such that III - gil is arbitrarily
small?

Blatt proved in [I] that this question can be answered in the affirmative
if Q has at most n isolated points. To formulate Blatt's theorem we need
the following notation.

Let IE C(Q) and VE V be its best approximation. We denote by
m(f) := min {IRI: R reference with respect to I - v}. Furthermore, for
k E {n + 1, ... , 2n + I} we set

Tk := {IE c(Q): m(f) = k}.
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1.4. THEOREM (Blatt [1]). (i) T 2n + 1 is an open subset olc(Q).

(ii) T2n + I is dense in C( Q) iff Q has at most n isolated points.

The terms "open" and "dense" in Theorem 1.4 refer to the topology
generated by the Chebyshev norm.

However, it remained open whether an analogous result holds if only
analytic functions are considered instead of the whole space C(Q).

For abbreviation, let

A(Q) := {f E C(Q) :1 analytic in the interior of Q}

H(Q) := {fE c(Q):1 analytic in a neighbourhood of Q}

P(Q) := {f E C(Q) : 1 polynomial on Q}.

The purpose of this paper is to show that T 2n + 1 n P(Q) is dense in A(Q)
if Q has at most n isolated points and satisfies a certain regularity condition
[5]. This regularity condition reads as follows:

1.5. DEFINITION. The compact set Q satisfies the condition (*), if the
complement C\Q is connected and if to each point Zo of the boundary oQ
of Q there exists a continuous function qJ: Q \ {zo} --+ IR and a constant
y > 0 such that

qJ(Q\{zo})c [-y, +y]

and

z - Zo = Iz - zol e,q>(=1

1.6. EXAMPLES. (a) Let Q be compact with connected complement. If
for each Zo E oQ there exists lj; E [ -1t, +1t] and 15 0 > 0 such that for
0<15;:::;; 150

then (*) holds.

(b) If Q is a compact spiral around the origin, for instance

Q = {e - (+ il: t ~ O} u {O},

then (*) does not hold.



STRONG UNIQUENESS

2. THE MAIN THEOREM
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2.1. THEOREM. Let Q comply ..vith (*) and let V c: A (Q). Then the
following statements hold:

(i) T 2n + 1 n A(Q) is an open subset of A(Q).

(ii) T 2n + 1 n P(Q) is dense in A(Q) if and only if Q has at most n
isolated points.

To prove Theorem 2.1 we need the following two lemmas. The first one
will be shown in Section 3. The second one is part of Blatt's proof of his
Main Lemma [1, pp. 163-166].

2.2. LEMMA. Let Q comply with (*), f E H( Q), e > O. Furthermore, let
m, rE N, r';3m, zo, ..., zmEOQ, and Yo, ..., YmEC\{O}, as well as additional
points zm + I' ... , zr E Q. The points zo, ..., zr are pairwise distinct.

Then there are a function g E A (Q) and open neighbourhoods U0' ... , Um of
ZO, ..., Zm such that the following properties hold:

(i) g(zd = Yk for k = 0, ... , m.

(ii) g(zk)=Ofor k=m+ 1, ..., r.

(iii) For k = 0, ..., m and ZE (Q n Ud\ {Zk}:

(a) If(z)1 + Ig(z)1 < If(zdl + Ig(zdl and

(b) Ig(z)1 < Ig(zdl.

(iv) For ZEQ\U;;~o Uk: Ig(z)1 <e.

2.3. LEMMA (Blatt [I]). Let v E V be the best approximation to f E C(Q)
u'ith

as reference with respect to f - v, m ~ 2n. If Q has at most n isolated points
then to each e > 0 there exists a reference

with length m + 1 and ZoE Q\{ZI' ..., zm} such that for J=O, ... , m

Proof of Theorem 2.1. (i) follows from Theorem 1.4(i). A proof that in
(ii) the limitation of the number of isolated points is necessary can be
found in [I] and in [5]. To prove the sufficiency let Q have at most n
isolated points. FixfEA(Q)n Tm, m~2n, with best approximation VE V
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and reference R = {(z" t/J 1), ..., (Zm, t/J m)} with respect to I-v. First we
want to show that I can be approximated uniformly by elements of
Tm +, n A(Q).

Fix E > 0. Since f, v E A (Q) we conclude by the maximum principle for
analytic functions that z" ... , zm E cQ. Applying Lemma 2.3 we obtain a
reference

with length m + I such that for k = 0, ... , m

E
IU-v)(zd-e-'<Pklll -viii ~8' (I)

We observe that oQ has at most n isolated points because this is true for
Q. Moreover, the point Zo can be chosen as a boundary point of Q. Hence,
we may apply Lemma 2.2 to zo, ..., Zm'

First we show that there exists JE A (Q) such that

(J - v)(z) = e-i<P'111 - vii

I(J - v)(z)1 < 11/- vii

IIJ - III ~E.

for j=O, ..., m, (2)

(3 )

(4)

Hence IIJ - vii = III - vii and the set of extremal points of J- v consists
exactly of the points zo, ... , Zm' Using (i), (ii) and (iii)(b) of Lemma 2.2,
there exists a function g 1 E A (Q) such that for j = 0, ..., m

and

Ilg,1I = max Ig,(zj)l.
j=O, ... ,m

We may assume that f; < 411/ - vii. Thus due to (I )

(6)

Let

(7)



then fl E A (Q) and
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e
/lfl/l < Ilf - v/l- 8,

e
If1(zi)1 = IIf - vll-4,

3
IIfl + V - fll < 8" e.
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(8 )

(9 )

(10 )

Property (9) is obvious, (8) and (10) are consequences of (6).
Since the complement of Q is connected, Mergelyan's Theorem [3]

yields f2 E P( Q) with

( 11)

Furthermore, we may assume that the following interpolation conditions
hold [6, Chap. XI, Thm. 1]:

for k = 0, ..., m. ( 12)

Now, by Lemma 2.2 we obtain g2 E A(Q) and open neighbourhoods
Uo, ..., Urn of 20, ... , 2 m such that for k = 0, ..., m

Ig2(z)! < Ig2(Zk)! for Z E (Q n Uk)\ {Zk}, (15)

Ig2(z)1 ~ 1£6 for ZEQ\kYO Uk' (16)

Consequently,

(I 7)

Let !:=f2+V+g2' We shall show that! satisfies (2)-(4). First, for
j=O, ... ,m
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£ .
= I, (Zi) + 4e- ''1',
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(by (12) and (13)

( £). £- 1-411/-vll e 1'I"II/-v 11 +4e ;'1',

= e ;'I"llf - vii.

(by (5) and (7))

Therefore, l satisfies (2). To prove (3), let Z E Q \ {z0' ... , Z m} and consider
the following two situations.

Case I. There is an index j E {O, ..., m} with Z E Vi: Then (9),
(12 )-(14) yield

IU- v)(z)1 ~ 1/2(z)1 + Ig2(=)1

< 1f~(zi)1 + [g2(zi)1

£ £
=1I/-vll--+­

4 4

= III -vII·
Case 2. Z E Q\ u;n~ 0 Vi: Then

1c1- v)(z)1 = 1/,(z) + j~(=) - I,(z) + g2(z)1

~ 11/111 + IIf~ -I,ll + Ig2(z)1
. £ £ £

~ III - v II - 8+16 +16

= III-vii,

where the inequalities (8), (II) , and (16) were applied. Hence, (3) is true.
Using (17), (10), and (11),

Ill-III = Ill- v - f~ +12 -I, + I, + v - III

~ IIg211 + Ilj~-/"1 + III, +v- III
£ [; 3

~4+16 +8£ < £,

and (4) is proved.
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From (2) and (3) we conclude that R is a reference with respect to
] - v and 1E T /II + I' Iterating this method, we construct J E T2n + I with
ill - Iii < e. Hence A(Q) (\ T 2n + I is dense in A(Q). On the other hand,
T 2/1 + I is open and P( Q) is dense in A (Q) by the Theorem of Mergelyan.
Hence, P( Q) (\ T 2/1 + 1 is dense in A (Q) and the theorem is proved.

3. PROOF OF LEMMA 2.2

Due to condition (*) there exists for any k E {O, ..., m} a continuous
function

cp:Q\{zd-+ 1R

and }' > I such that

for zEQ\{zd. Now we define on Q\{zd a branch of the logarithm by
log(z - zd := log( Iz - zkl) + icp(z). Obviously, log(z - Zk) is continuous
and single-valued on Q\ {zd and analytic in the interior of this set.
Furthermore, let us define

for ZEQ\{zd

and

Then for Z E Q\ {Zd
qk(Z) = elogll=-=,II/Y ei<P(=)/)'

= Iz - zkI1/i' eil/JI=)

with tjJ(z) E (-n/4, + n/4). Since lim= ~ =, qk(Z) = 0, we conclude qk E A(Q).
For k = 0, ..., m we define

/II r

pdz):= TI (z - Zj) TI (z - z,),
j ~ 0, j # k j ~ /II + 1

and for (J > °
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Next, we show that there exists a Qo > 0 such that for all Q~ Qo each
polynomial

has no zeroes in Q-hence g rEA (Q )-and the statements (i )-(iv) of
Lemma 2.2 hold for gr' The proof is rather lengthy. Therefore we present
it in several steps and start with two remarks which can easily be shown.
Then we prove two estimates for the denominator gr'

3.1. Remark. Let a,bEiC\{O}, IX :=argb-arga. Then lal+lbl COSIX~
la+bl·

3.2. Remark. Let a, c, dE IR, a> 0, c > 0, I' > 1. Let the function
(/): [0, 00) --+ IR be defined by

a
(/)(x) = 1 Ilr + dx,

+cx

then there exists b > 0 such that (/)(x) < a for all x E (0, b).

3.3. LEMMA (Local Estimate of the Denominator). There exist pairwise
disjoint neighbourhoods Vo, ..., Vm of ZO, ... , Zm such that for Q> 0 and
ZE Q n Vk the following inequality holds:

Moreover, the neighbourhoods can be chosen such that

for k = 0, ..., m.

Proof Let k E {O, ... , m}. Due to pdzd;6 0 we have an open
neighbourhood Vk of Zk such that for ZE Vk

Vo, ..., Vm can be chosen to be pairwise disjoint. If Z = Zb then the
inequality holds, since qk(zd=O. If zEQn Vk, Z;6Zb we use Remark 3.1
with a:= Pk(Z), b :=QPk(zd qk(Z), Then

larg(b) - arg(a)1 ~ larg(Pk(zk)) - arg(Pk(z))! + larg(qk(z))1 ~ ~7l:

and hence

cos(arg(b)-arg(a))>cos ~7l:
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la + bl ~ lal + Ibl cos ~1r.
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3.4. LEMMA (Global Estimate of the Denominator). Let R > 0 and
b > O. Then there exists a i! > 0 such that for Q~ i! and any k E {O, ... , m}

forall ZEQ with IZ-Zkl ~b.

Proof Set

_._ R+maxO';;j,;;mmax ZEQ Ipj(z)1

Q.- (mino';;j,;;m Ipj(zJI )(mino';;J,;;m min1z_z;l;>b Iqj(z)\)'

Then °< i! < 00, and for Q ~ Qwe have

IPk(Z) + QPk(Zk) qdz)1

~ -IPk(Z)1 +i!IPk(Zk)llqk(Z)1

~ -IPk(Z)1 + R + max IPj(z)!
ZEQ.j=O..... m

~R.

Proof of Lemma 2.2. We prove that the function g" which was defined
above satisfies the conditions of Lemma 2.2. Choose Vo, ... , Vm according
to Lemma 3.3, b>O with {zEQllz-zkl<b}cVk for k=O, ...,m and
i! = QI according to Lemma 3.4, where R = I. Let Q~ QI and ZE Q.

Case 1. Z lies in one of the Vk : Then by Lemma 3.3,

Case 2. zrf,U';=o Vk • Then by Lemma 3.4,

Hence in both cases the denominator is different from zero. The statements
(i) and (ii) hold obviously. We show (iii) for Zo: Given an f E H(Q), ZE Vo,
Z# Zo, Q~ Q). Fix M:= max {I Yol, ..., IYml}. We write g instead of g". Due
to Lemma 3.3 and Lemma 3.4 we have
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Using

we get

where

and
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Ig(zll:S;; IYol !Po(zl!
1Po(z) + (]Po(zo) qo(z II

+Iz-zol f n;~I,h'klz-z)IYkI
k~1 !Pk(z)+{]pdzdqk(Z)1

:< 1 ' 1 I Po(z )\
" } 0 1Po(z)1 + {] cos ~n 1Po(zolllqo(z II

"' r

+ Iz-zol MIn Iz-zJ
k~ 1 /~ I.J"ek

. \Po(zol! 3Co := mf -- (]\cos-n>O
ZEVonQ Po(z) 8

(

m r I/(Zl-/(zoll)
do := sup M L n Iz - zil + ,,_ " < 00.

ZEVonQ k~1 J~l.j"ek ~ ~o

With a = Ig(zo)!, C = Co and d = do we determine a 00 > 0 (3.2) such that for
0< Iz - zol < 00
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Determining analogously 01 , ... , Om> 0 and setting
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(k=O, ..., m)

we have proved (iii)(a).
Obviously, we can prove (iii)(a) for a finite number of analytic functions

f, getting the Uk as intersections of open neighbourhoods of Zk' Admitting
a second functionf2=0, we have shown (iii)(b). To prove (iv) we define

I
R:=(m+I)M max IPk(z)l-

=EQ,k~O,.... m e

and choose a 0>0 such that {zEQlz-Zkl <o} C Uk' Due to 3.4 there is
Q2>0 such that for ZEQ\U;~o Uk and Q?:Q2

Ig(z)1 ~M f IPk(Z)1
k=O IPk(Z) + l?Pk(Zk) qk(Z)/

~ M f IPk(z)i
k~O R

m f,

~M L
k~o(m+I)M

=e,

(!O := max {(! I' (!2} complies with the statements (i) to (iv),
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